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A B S T R A C T

Effective social functioning relies in part on the ability to identify emotions from auditory stimuli and respond
appropriately. Previous studies have uncovered brain regions engaged by the affective information conveyed by
sound. But some of the acoustical properties of sounds that express certain emotions vary remarkably with the
instrument used to produce them, for example the human voice or a violin. Do these brain regions respond in the
same way to different emotions regardless of the sound source? To address this question, we had participants
(N¼ 38, 20 females) listen to brief audio excerpts produced by the violin, clarinet, and human voice, each
conveying one of three target emotions—happiness, sadness, and fear—while brain activity was measured with
fMRI. We used multivoxel pattern analysis to test whether emotion-specific neural responses to the voice could
predict emotion-specific neural responses to musical instruments and vice-versa. A whole-brain searchlight
analysis revealed that patterns of activity within the primary and secondary auditory cortex, posterior insula, and
parietal operculum were predictive of the affective content of sound both within and across instruments.
Furthermore, classification accuracy within the anterior insula was correlated with behavioral measures of
empathy. The findings suggest that these brain regions carry emotion-specific patterns that generalize across
sounds with different acoustical properties. Also, individuals with greater empathic ability have more distinct
neural patterns related to perceiving emotions. These results extend previous knowledge regarding how the
human brain extracts emotional meaning from auditory stimuli and enables us to understand and connect with
others effectively.
Introduction

The capacity to both convey and perceive emotions through sounds is
crucial for successful social interaction. For example, recognizing that a
person is distressed based on vocal expressions alone can confer certain
advantages when it comes to communicating and connecting with others.
Intriguingly, emotions can be recognized in non-vocal sounds as well.
Music can convey emotions even when not mimicking the human voice,
despite the fact that an ability to express emotions through music does
not serve as clear an evolutionary function as vocal expressions of emo-
tions (Frühholz et al., 2014). And yet, the capability to consistently and
reliably discern musical emotions appears to be universal, even in in-
dividuals with no musical training (Fritz et al., 2009). Studying the
neural overlap of expressions of emotions in both vocal and musical
stimuli therefore furthers our understanding of how auditory information
becomes emotionally relevant in the human brain.

Previous univariate neuroimaging studies that have examined this
neural overlap have reported activity in the superior temporal gyrus
ebruary 2018; Accepted 27 February
(Escoffier et al., 2013), amygdala and hippocampus (Frühholz et al.,
2014) during both musical and non-musical, vocal expressions of emo-
tions. While these results support the notion that musical and vocal
patterns recruit similar brain regions when conveying emotions, they do
not clarify whether these regions are responsive to a specific emotional
category or are involved in emotion processing more generally. Neither
study addressed the neural activity patterns that are specific to a
particular emotion, but conserved across the two different domains of
music and vocals. One particular univariate study did attempt to answer
this question, but only with the emotion of fear: the researchers found
that the amygdala and posterior insula were commonly activated in
response to fear expressed through non-linguistic vocalizations and
musical excerpts, as well as through facial expressions, (Aub�e et al.,
2013).

In general, however, univariate methods are not well suited for
evaluating commonalities in the processing of emotions across the senses
because, due to spatial smoothing and statistical limitations, they cannot
assess information that may be located in fine-grained patterns of activity
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dispersed throughout the brain (Kaplan et al., 2015). Multivoxel pattern
analysis (MVPA), which entails classifying mental states using the
spatially-distributed pattern of activity in multiple voxels at once, can
provide a more sensitive measure of the brain regions that are respon-
sible for distinguishing amongst different emotions (Norman et al.,
2006). In combination with a searchlight analysis, in which classification
is performed on local activity patterns within a sphere that traverses the
entire brain volume, MVPA can reveal areas of the brain that contain
information regarding emotional categories (Kriegeskorte et al., 2006;
Peelen et al., 2010). This multivariate approach has been used in various
capacities to predict emotional states from brain data (Saarimaki et al.,
2015). Spatial patterns within the auditory cortex, for example, were
used to classify emotions conveyed through both verbal (Ethofer et al.,
2009) and nonverbal (Kotz et al., 2013) speech. However, it remains
unclear whether the neural activity in these regions correspond to a
particular category of emotion or are instead only sensitive to the
lower-level acoustical features of sounds.

Multivariate cross-classification, in which a classifier is trained on
brain data corresponding to an emotion presented in one domain and
tested on separate brain data corresponding to an emotion presented in
another, is a useful approach to uncovering representations that are
modality independent (see Kaplan et al., 2015 for review). Previously,
this approach has been used to demonstrate that emotions induced by
films, music, imagery, facial expressions, and bodily actions can be suc-
cessfully classified across different sensory domains (Peelen et al., 2010;
Skerry and Saxe, 2014; Kragel and LaBar, 2015; Saarimaki et al., 2015;
Kim et al., 2017). Cross-modal searchlight analyses revealed that suc-
cessful classification of emotions across the senses and across sources
could be achieved based on signal recorded from the cortex lying within
the superior temporal sulcus (STS), the posterior insula, the medial
prefrontal cortex (MPFC), the precuneus, and the posterior cingulate
cortex (Kim et al., 2010; Peelen et al., 2010; Saarimaki et al., 2015).
While informative for uncovering regions of the brain responsible for
representing emotions across the senses, these studies did not address
how the brain represents emotions within a single sensory domain when
expressed in different ways. To our knowledge, there has been no existing
research on the affect-related neural patterns that are conserved across
vocal and musical instruments, two types of auditory stimuli with
differing acoustical properties.

Additionally, the degree to which emotion-specific predictive infor-
mation in the brain might be modulated by individual differences re-
mains unexplored. Empathy, for example, which entails understanding
and experiencing the emotional states of others, is believed to rely on the
ability to internally simulate perceived emotions (Lamm et al., 2007).
Activation of the anterior insula appears to be related to linking observed
expressions of emotions with internal empathic responses (Carr et al.,
2003) and the degree of activation during emotion processing tasks is
shown to be positively correlated with measures of empathy (Singer
et al., 2004; Silani et al., 2008). Emotion-distinguishing activity patterns
in the insula may therefore relate to individual differences in the ten-
dency to share in the affective states of others.

Here, we used MVPA and cross-classification on two validated data-
sets of affective auditory stimuli, one of non-verbal vocalizations (Belin
et al., 2008) and one of musical instruments (Paquette et al., 2013), to
determine if patterns of brain activity can distinguish discrete emotions
when expressed through different sounds. Participants were scanned
while listening to brief (0–4s) audio excerpts produced by the violin,
clarinet, and human voice and designed to convey one of three target
emotions—happiness, sadness, and fear. The authors who published the
original dataset chose the violin and clarinet because both musical in-
struments can readily imitate the sounds of the human voice, but are
from two different classes (strings and woodwinds respectively; Paquette
et al., 2013). These three target emotions were used because (1) they
constitute what are known as “basic” emotions, which are believed to be
universal and utilitarian (Ekman, 1992), (2) they can be reliably pro-
duced and conveyed on the violin and clarinet (Hailstone et al., 2009)
2

and (3) they are also present in both the vocal and musical datasets.
After scanning, a classifier was trained to differentiate the spatial

patterns of neural activity corresponding to each emotion both within
and across instruments. To understand the contribution of certain
acoustic features to our classification results, we compared cross-
instrument classification accuracy with fMRI data to cross-instrument
classification accuracy using acoustic features of the sounds alone.
Then, a searchlight analysis was used to uncover brain areas that
represent the affective content that is shared across the two modalities,
i.e. music and the human voice. Finally, classification accuracies within a
priori-defined regions of interest in the auditory cortex, including the
superior temporal gyrus and sulcus, as well as the insula were correlated
with behavioral measures of empathy. These regions were selected for
further investigation because of their well-validated roles in the pro-
cessing of emotions from sounds (Bamiou et al., 2003; Sander and
Scheich, 2005) as well as across sensory modalities (Peelen et al., 2010;
Saarimaki et al., 2015). Based on previous results, we predict that BOLD
signal in the auditory and insular cortices will yield successful classifi-
cation of emotions across all three instruments. Moreover, given the
known role of the insula in internal representations of observed
emotional states (Carr et al., 2003), we hypothesize that classification
accuracies within the insula will be positively correlated with empathy.

Materials and methods

Participants

Thirty-eight healthy adult participants (20 females, mean
age¼ 20.63, SD¼ 2.26, range¼ 18–31) were recruited from the Uni-
versity of Southern California and surrounding Los Angeles community.
All participants were right-handed, had normal hearing and normal or
corrected-to-normal vision, and had no history of neurological or psy-
chiatric disorders. All experimental procedures were approved by the
USC Institutional Review Board. All participants gave informed consent
and were monetarily compensated for participating in the study.

Survey

The Goldsmith Musical Sophistication Index (Gold-MSI; Mullensie-
fen, et al., 2014) was used to evaluate past musical experience and degree
of music training. The Gold-MSI contains 39 items broken up into five
subscales, each related to a separate component of musical expertise:
active engagement, perceptual abilities, musical training, singing abilities, and
emotions. The scale also contains a general musical sophistication score,
which is the sum of responses to all items. Each item is scored on a
7-point Likert scale from 1¼ completely disagree to 7¼ completely agree.

Both cognitive and affective components of empathy were measured
using the Interpersonal Reactivity Index (Davis, 1983), which includes 28
items and four subscales: fantasy and perspective taking (cognitive
empathy) and empathic concern and personal distress (affective
empathy). Supplementary Table 1 summarizes the results obtained from
the surveys.

Stimuli

Two validated, publically-available datasets of short, affective audi-
tory stimuli were used: the Music Emotional Bursts (MEB; Paquette et al.,
2013) and the Montreal Affective Voices (MAV; Belin et al., 2008).
Studying neural responses to relatively short stimuli provided two main
advantages: (1) As suggested Paquette et al. (2013), these brief bursts of
auditory emotions may mimic more primitive, and therefore more bio-
logically relevant, expressions of affect and (2) it allows us to maximize
the number of trials that can be presented to participants in the scanner,
theoretically improving the training of the classifier. The MEB contains
60 brief (1.64s on average) auditory clips designed to express 3 basic
emotions (happiness, sadness, and fear) played on either the violin or
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clarinet. The dataset contains 10 unique exemplars of each emotion on
each instrument. The MAV is a set of brief (1.35s on average) non-verbal
vocalizations that reliably convey the same 3 emotions (happiness,
sadness, and fear) as well as several others (disgust, pain, surprise, and
pleasure; these emotional clips were not included in this study because
they were not included in theMEB dataset). TheMAV dataset contains 10
unique exemplars of each emotion as well and includes both female and
male voices. Both the MEB and MAV also include a neutral condition,
which were not included in this study either. All clips from both datasets
had been normalized so that the peak signal value corresponded to 90%
of the maximum amplitude (Belin et al., 2008; Paquette et al., 2013).
Combining these two stimulus datasets resulted in 90 unique stimuli: 30
featuring the violin, 30 featuring the clarinet, and 30 featuring the
human voice, with 30 clips for each of the three emotions (happiness,
sadness, and fear).
Design and procedure

Stimuli were presented in an event-related design using MATLAB's
PsychToolbox (Kleiner et al., 2007) in 6 functional runs. During scan-
ning, participants were instructed to be still, with their eyes open and
focused on a fixation point continually presented on a screen, and attend
to the audio clips when they heard them. Auditory stimuli were pre-
sented through MR-compatible OPTOACTIVE headphones with
noise-cancellation (Optoacoustics). An eye-tracking camera was moni-
tored to ensure that the participants were awake and alert during
scanning.

During each functional run, participants listened to 45 audio clips, 5
clips for each trial type (emotion x instrument). Each clip was followed by
a rest-period that varied in length and resulted in a total event length
time (clip þ rest) of 5s, regardless of the length of the clip. Five, 5-s rest
events, in which no sound played, were also added as an additional
condition, resulting in a total functional run time of 250s (125 TRs, see
Fig. 1). Two unique orders of stimuli presentation were created using a
genetic algorithm (Kao et al., 2009), which takes into account designed
detection power and counterbalancing to generate an optimal design that
is pseudorandomized. One optimized order of stimuli presentation was
used on odd-numbered runs (1, 3 and 5) and the other order was used on
even-numbered runs (2, 4, and 6). Over the course of the 6 functional
runs, each of the 90 audio stimuli were presented exactly 3 times.

To validate the accuracy of the clips in terms of their ability to convey
the intended emotion, after scanning, participants listened to all 90 clips
again in random order and selected the single emotion, from the list of
three, that they believed was being expressed in the clip. To further
describe their perceptions of each clip, participants also rated each clip
for how intensely it expressed each of the three target emotions using a
scale ranging from 1 (not at all) to 5 (very much).
Data acquisition

Images were acquired with a 3-T SiemensMAGNETON Prisma System
and using a 32-channel head coil. Echo-planar volumes were acquired
continuously with the following parameters: repetition time
3

(TR)¼ 2000ms, echo time (TE)¼ 25ms, flip angle¼ 90�, 64� 64 ma-
trix, in-plane resolution 3.0� 3.0mm, 41 transverse slices, each 3.0mm
thick, covering the whole brain. Structural T1-weighted magnetization-
prepared rapid gradient echo (MPRAGE) images were acquired with the
following parameters: TR¼ 2530ms, TE¼ 3.09ms, flip angle¼ 10�,
256� 256 matrix, 208 coronal slices, 1mm isotropic resolution.
Data processing

Data preprocessing and univariate analysis was done in FSL
(FMRIB Software Library, Smith et al., 2004). Data were first pre-
processed using brain extraction, slice-time correction, motion
correction, spatial smoothing with 5 mm FWHM Gaussian kernel, and
high-pass temporal filtering. Each of the 9 trial types (emotion*in-
strument) was modeled with a separate regressor derived from a
convolution of the task design and a double gamma hemodynamic
response function. Six motion correction parameters were included in
the design as nuissance regressors. The functional data were registered
to the high-resolution anatomical image of each subject and to the
standard Montreal Neurological Institute (MNI) brain using the FSL
FLIRT tool (Jenkinson and Smith, 2001). Functional images were
aligned to the high-resolution anatomical image using a 7
degree-of-freedom linear transformation. Anatomical images were
registered to the MNI-152 brain using a 12 degree-of-freedom affine
transformation. This entire procedure resulted in one statistical image
for each of the 9 trial types (3 emotions by 3 instrument) in each run.
Z-stat images were then aligned to the first functional run of that
participant for within-subject analysis.
Multivoxel pattern analysis

Multivoxel pattern analysis (MVPA) was conducted using the
PyMVPA toolbox (http://www.pymvpa.org/) in Python. A linear support
vector machine (SVM) classifier was trained to classify the emotion of
each trial type. Leave-one run out cross-validation was used to evaluate
classification performance (i.e. 6-fold cross-validation with 45 data
points in the training dataset and 9 data points in the testing dataset for
each fold). Classification was conducted both within each instrument as
well as across instruments (training the classifier on a subset of data from
two of the instruments and testing on a left-out subset from another in-
strument) using a mask of the participant's entire brain. In addition to
training on two instruments and testing on the third, we also ran cross-
instrument classification for every pairwise combination of training on
one instrument and testing on another (6 combinations in total). Feature
selection on the whole brain mask was employed on the training data
alone using a one-way ANOVA and keeping the top 5% most informative
voxels (mean 3320 voxels after feature selection, SD¼ 251). Within
participant classification accuracy was computed by averaging the ac-
curacy of predicting the emotion across each of the 6 folds. One-sample t-
tests on the population of participant accuracies were performed to
determine if the achieved accuracies were significantly above theoretical
chance (33%).
Fig. 1. Example of one functional session. In each
session, participants listened to 45 clips and 5 rest
trials, each of which lasted for a total of 5s. Each
functional session lasted around 4.5min and there
were six functional scans in total.

http://www.pymvpa.org/
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Region of interest classification

In addition to whole brain analysis, we performed a region of interest
(ROI) analysis focusing on a-priori ROIs in the auditory cortex and insular
cortex. These two ROIs were chosen because of their well-known roles in
the processing of emotions from sounds (Bamiou et al., 2003; Sander and
Scheich, 2005). For the auditory cortex, we used the Harvard-Oxford
Atlas planum temporale mask, which is defined as the superior surface
of the superior temporal gyrus, as well as the Heschl's gyrus mask,
merged and thresholded at 25 (Fig. 2A). For the insula, we used masks of
the dorsal anterior, ventral anterior, and posterior insula described in
Deen et al. (2011) that were defined by the results of a cluster analysis of
functional connectivity patterns (Fig. 2B). Within and across instrument
classification was conducted in exactly the same way as described above.
For the region of interest analysis, feature selection was not used, that is,
all voxels within the specified anatomical region were used.
Whole-brain searchlight analysis

A searchlight analysis for classifying emotions was conducted both
within and across modalities (Kriegeskorte et al., 2006). For each subject,
the classification accuracy was determined for spheres with radius 3
voxels throughout the entire brain. A sphere of that size was chosen to
roughly match the size of the anatomical regions of interest, large enough
to not be biased by individual variation in any one voxel and yet small
enough to adhere to known anatomical boundaries. These accuracies
were then mapped to the center voxel of the sphere and warped to
standard space. The searchlight analysis was conducted both within in-
struments and across instruments. For the within instrument search-
lights, the SVM classifier was trained on data from all but one of the six
runs and tested on the left-out run (leave-one-run-out cross validation).
To evaluate the significance of clusters in the overlapped searchlight
accuracy maps, nonparametric permutation testing was performed using
FSL's Randomise tool (Winkler et al., 2014), which models a null distri-
bution of expected accuracies at chance. The searchlight accuracy maps
were thresholded using threshold-free cluster enhancement (TFCE; Smith
and Nichols, 2009).
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For the cross-instrument searchlight analysis, the classifier was
trained on data from every combination of two instruments and tested on
data from the left-out instrument, resulting in a total of three cross-
instrument accuracy maps. The three cross-instrument searchlights
were also overlayed to determine the regions of overlap. To determine
the significance of cross-classification searchlight, we used a more
complex nonparametric method than what was used to determine sig-
nificance of the within-instrument searchlight maps. As described in
Stelzer et al. (2013), this method involves random permutation tests on
the subject level combined with bootstrapping at the group level. While
Randomise with TFCE, which was used to determine significance of the
within-instrument searchlight maps, does provide excellent control of
type 1 errors, the Stelzer et al. (2013) can provide a more accurate
estimation of the group level statistics because it models the null distri-
bution of searchlight maps on both the individual subject level and group
level. However, because within-subject permutation testing and
across-subject bootstrapping is computationally intensive, we only used
this method for determining significance thresholds for the
cross-modality searchlight maps, not for the within-instrument search-
lights maps. We believe this decision is justified because a) within mo-
dality classification in auditory cortex is already well known and does not
require a higher standard of proof, b) successful cross-modal classifica-
tion implies successful within modality classification, and c) the
cross-modal searchlights constitute the most direct test of our
hypotheses.

To achieve this, we randomly permuted the class labels 50 times and
performed whole-brain cross searchlight analyses to create 50 single
subject chance accuracy maps. One permuted accuracy map per subject
was selected at random (with replacement) to create a pooled group
accuracy map. This procedure was repeated 10,000 times to create a
distribution of pooled group accuracy maps. Next, a threshold accuracy
was found for each voxel by determining the accuracy that corresponded
to a p-value of 0.001 in the voxel-wise pooled group accuracy map.
Clusters were then defined as a group of contiguous voxels that survived
these voxel-wise accuracy thresholds and cluster sizes were recorded for
each of the 10,000 permuted group accuracy maps to create a histogram
of cluster sizes at chance. Finally, cluster-sizes from the chance
Fig. 2. Regions of interest. A, The auditory cortex was
defined using the Harvard-Oxford Atlas by merging the
planum temporale mask with Heschl's gyrus mask, both
thresholded at 25. B, Three major subdivisions, the dorsal
anterior, ventral anterior, and posterior, were identified
based on the results from a previous study using cluster
analysis of functional connectivity patterns.
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distribution were compared to cluster-sizes from the original, group ac-
curacy maps to determine significance. An FDR-method using Benjamini-
Hochberg procedure was used to correct for multiple comparisons at the
cluster level (Heller et al., 2006).

Multiple regression with personality measures

Individual scores on the empathy subscales of the IRI were correlated
with classification accuracy within the four ROIs for both within and
across classification to determine if the degree of emotion-specific pre-
dictive information within these regions is associated with greater
emotional empathy. Age, gender, and music sophistication, as measured
by the Gold-MSI, were included in the model as regressors of no interest.
Additionally, behavioral accuracy of correctly identifying the intended
emotions of the sound clips collected outside of the scanner were
correlated with performance of the classifier.

Acoustic features of sound clips

For extracting acoustic features from the sound clips believed to be
relevant to emotional expression, we used MIRToolbox, a publically
availableMATLAB toolbox primarily used for music information retrieval
(Lartillot and Toiviainen, 2007), but well suited for extracting relevant
acoustical information from non-musical and vocal stimuli as well (Linke
and Cusack, 2015; Rigoulot et al., 2015). These included: spectral
centroid, spectral brightness, spectral flux, spectral rolloff, spectral en-
tropy, spectral spread, and spectral flatness for evaluating timbral char-
acteristics, RMS energy for evaluating dynamics, mode and key clarity for
evaluating tonal characteristics, and fluctuation entropy and fluctuation
centroid for evaluating rhythmic characteristics of the clips (Alluri et al.,
2012). We additionally added the acoustic features published in Paquette
et al. (2013), which included duration, mean fundamental frequency,
max fundamental frequency, and min fundamental frequency. We then
evaluated how these features varied by instrument and by emotion and
conducted a classification analysis based on acoustic features alone to
predict the intended emotion of the sound clip.

Because we found a main effect of emotion label on duration of the
clips (i.e. fear clips were significantly shorter than sad clips) and we do
not believe that this different reflects a meaningful difference amongst
emotions, we added an additional regressor of no interest where the
height of the regressor reflected the duration of each clip in a separate
GLM analysis. MVPA and searchlight analysis were then repeated with
this model for comparison.

Results

Behavioral results

Behavioral ratings of the sound clips outside of the scanner were
collected for 37 out of the 38 participants. Overall, participants correctly
labeled 85% of the clips (SD¼ 17%). Averaged correct responses for each
emotion and instrument are presented in Table 1. The between-within
ANOVA on accuracy scores for each of the clips showed a significant
interaction between emotion and instrument (F(4,144)¼ 64.30,
p< 0.0001). Post-hoc follow-up t-tests showed that the fear condition on
Table 1
Behavioral ratings of intensity and emotion label for stimuli by instrument and emo
intended emotion label.

Happy Sad

Acc Intensity Acc Intensity

All 0.92 3.86 (0.58) 0.85 3.81 (0.68
Voice 0.82 4.17 (0.45) 0.81 4.35 (0.48
Violin 0.96 3.54 (0.61) 0.89 3.54 (0.56
Clarinet 0.97 3.85 (0.50) 0.85 3.55 (0.64

5

the clarinet was more consistently labeled incorrectly (mean accu-
racy¼ 55%, SD¼ 16%) than the happy condition on the clarinet (mean
accuracy¼ 97%, SD¼ 5%; t(36)¼ 15.99, p< 0.0001, paired t-test) as
well as the fear condition in the violin (mean accuracy¼ 90%, SD¼ 13%;
t(36)¼ 13.83, p< 0.0001, paired t-test) or voice (mean accuracy¼ 94%,
SD¼ 7%; t(36)¼ 13.27, p< 0.0001, paired t-test).

For intensity ratings of the clips, we calculated the average intensity
of each emotion for each participant. Again, an interaction between
emotion and instrument was found for the intensity ratings
(F(4,144)¼ 38.73, p< 0.0001, ANOVA). Fear clips on the clarinet were
rated as significantly less intense than fear clips on the violin
(t(36)¼ 14.49, p< 0.0001, paired t-test) and voice (t(36)¼ 13.16,
p< 0.0001, paired t-test), whereas sad clips on the voice were rated as
significantly more intense than sad clips on the violin (t(36)¼ 9.84,
p< 0.0001, paired t-test) or clarinet (t(36)¼ 9.90, p< 0.0001, paired t-
test; see Table 1 for average ratings of intensity and average accuracy).
Overall, the intensity ratings provide further information for the accuracy
scores: fear on the clarinet was themost difficult to identify and was rated
as significantly less intense. Participant intensity ratings were not found
to be related to the performance of the brain-based classifier.
Multivariate results

MVPA applied to the whole brain to predict the emotion of each clip
showed above chance (0.33) accuracies using data from all instruments
(M¼ 0.43, SD¼ 0.08, t(37)¼ 7.58, p< 0.0001). Above chance accuracy
was also obtained using data collected from each instrument individually
(clarinet: M¼ 0.39, SD¼ 0.12, t(37)¼ 3.06, p¼ 0.004; violin: M¼ 0.37,
SD¼ 0.11, t(37)¼ 2.18, p¼ 0.04; voice: M¼ 0.43, SD¼ 0.15,
t(37)¼ 4.14, p¼ 0.0002). Within instrument classification accuracy was
also significantly above chance in both the auditory cortex (M¼ 0.49,
SD¼ 0.06, t(37)¼ 15.06, p< 0.0001) and all three regions of the insula
(dorsal anterior: M¼ 0.38, SD¼ 0.07, t(37)¼ 4.06, p¼ 0.0002; ventral
anterior: M¼ 0.38, SD¼ 0.07, t(37)¼ 4.41, p< 0.0001; posterior:
M¼ 0.38, SD¼ 0.08, t(37)¼ 3.68, p¼ 0.0007, see Fig. 3). Confusion
matrices for within instrument classification in the whole brain and
auditory cortex are provided in the supplementary materials (Supple-
mentary Fig. 1) as well as additional measures of classification perfor-
mance, including sensitivity, specificity, positive predictive value, and
negative predictive value (Supplementary Table 2).

Cross-classification accuracies, in which the classifier was trained on
data from two instruments and tested on data from the left-out third
instrument, also showed successful classification for each combination of
training and testing (3 in total). Classification accuracy averaged across
the 3 combinations of training and testing was significantly greater than
chance in the whole brain (M¼ 0.38, SD¼ 0.09, t(37)¼ 3.56, p¼ 0.001)
as well as the region of interest in the auditory cortex (M¼ 0.44,
SD¼ 0.08, t(37)¼ 8.83, p< 0.0001), but not in the three insula ROIs.
Graphs of the accuracies for each combination of training and testing in
both the whole brain analysis and ROI analysis are presented in Fig. 3.
Confusion matrices for cross instrument classification in the whole brain
and auditory cortex are provided in Supplementary Fig. 2.

We additionally conducted cross-classification for all 6, pairwise
combinations of training on one instrument and testing on one other
instrument. Overall, the pairwise cross-instrument classification
tion. Accuracy is calculated as the number of clips correctly identified with the

Fear Total

Acc Intensity Acc Intensity

) 0.79 3.52 (0.87) 0.85 3.86 (0.58)
) 0.90 4.04 (0.56) 0.84 4.19 (0.51)
) 0.94 3.87 (0.69) 0.93 3.64 (0.64)
) 0.55 2.67 (0.61) 0.79 3.36 (0.77)



Fig. 3. Classification accuracies for MVPA decoding of emotions in auditory stimuli using fMRI data from the whole brain and four region of interest. A, Classification
accuracies in the whole brain, auditory cortex (AC), posterior insula (pI), dorsal anterior insula (dAI), and ventral anterior insula (vAI) with all three instruments
(violin, clarinet, voice) as well as within each instrument individually. B, Cross-instrument classification accuracies in the whole brain, auditory cortex (AC), posterior
insula (pI), dorsal anterior insula (dAI), and ventral anterior insula (vAI), leaving out data from one instrument and training on the other two. Error bars represent
indicate error. p values are calculated based on a one-sample t-test comparing classification with chance (0.33, dotted line). yp < 0.05, uncorrected; *p < 0.05;
**p < 0.01,***p < 0.001, corrected for multiple comparisons across the four ROIs.
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accuracies were significantly above chance in the auditory cortex. The
results are presented in Supplementary Fig. 3.

Searchlight results

The whole-brain, within instrument searchlight analysis revealed that
successful classification of the emotions of the musical clips could be
found bilaterally in the primary and secondary auditory cortices,
including the cortices lying within the superior temporal gyrus and sul-
cus, as well as the bilateral posterior insular cortices, parietal operculum,
precentral gyrus, inferior frontal gyrus, right middle temporal gyrus, the
right medial prefrontal cortex, right superior frontal gyrus, right pre-
cuneus, and right supramarginal gyrus (Fig. 4). Center coordinates and
accuracies for significant regions in the within instrument searchlight
analysis are presented in Supplementary Table 2.

Three whole-brain across instrument searchlight analyses were con-
ducted where the classifier was trained on data from two of the in-
struments and tested on the held-out third instrument. All three
searchlights showed significant classification bilaterally in primary
auditory cortex, including Heschl's gyrus, and the superior temporal
gyrus and sulcus, as well as the posterior insula and parietal operculum
(Fig. 5). Several other brain regions showed significant classification in
one or more of the searchlight analyses, but not all three. These included
the right middle and inferior frontal gyri and precentral gyrus (leaving
out the violin and the voice) and the MPFC (leaving out clarinet). Center
coordinates and accuracies for each significant region of the cross-
instrument searchlight analysis are presented in Supplementary Table 3.

Multiple regression results

Measures of the four subscales of the IRI were modeled in a multiple
regression to predict the classification accuracies in each of the four re-
gions of interest (auditory cortex and three subcomponents of the insula)
with age and gender added as covariates of no interest. In this model,
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empathic concern was positively correlated with both the within and
cross classification accuracies in the dorsal anterior insula (Within:
β¼ 0.08, p¼ 0.0101, Cross: β¼ 0.08, p¼ 0.0158). The significance of the
regression coefficient between empathic concern and within-instrument
accuracy in the dorsal anterior insula survived correction for multiple
comparisons, though the regression with cross-instrument accuracies did
not (Bonferroni correction with four regions of interest, alpha¼ 0.0125).
No other predictors were significantly correlated with accuracy in the
regions of interest.

Scores corresponding to the five subscales of the MSI were addi-
tionally modelled in a separate multiple regression as covariates of in-
terest to predict classification accuracies in the four ROIs. No significant
correlations were found between musical experience and classification
accuracy in either the auditory cortex or insula. Additionally, no signif-
icant correlations were found between behavioral accuracies of correctly
identifying the intended emotion of the clip (collected outside of the
scanner) and classification accuracy.
Acoustic features classification and duration

Duration was significantly different for the three emotions according
to a one-way ANOVA (F(2,87)¼ 110.30, p< 0.0001). Sad clips
(M¼ 2.39s, SD¼ 0.54) were significantly longer than the happy
(M¼ 1.48s, SD¼ 0.39; t(58)¼ 7.45, padjust¼ 1.2� 10�12) and fear clips
(M¼ 0.81s, SD¼ 0.25; t(58)¼ 14.38, padjust< 0.0001). Because duration
is not an acoustic feature directly related to the expression of an emotion,
and because it differed significantly by emotion, we wanted to ensure
that the classifier was not only classifying based on stimuli length rather
than its emotional content. We therefore added the length of each clip as
an additional parametric regressor in the lower-level GLM models and
redid both within and cross instrument classification with the z-stat im-
ages obtained from this analysis. The average within instrument accuracy
using duration as a regressor was 44% (SD¼ 7%) within the whole brain
and the average across instrument accuracy using duration as a regressor
Fig. 4. Within instrument whole-brain searchlight
results using data from all instruments and leave-one-
run out cross validation. Red-yellow colors represent
classification accuracy. Significant clusters deter-
mined by permutation testing. All images are
thresholded to show clusters that reached a FDR-
corrected significance level at alpha¼ 0.05.



Fig. 5. A, Cross-instrument whole-brain searchlight
results training on data collected during violin and
voice clips, testing on clarinet clips. B, Cross-
instrument whole-brain searchlight results training
on data collected during clarinet and voice clips,
testing on violin clips. C, Cross-instrument whole-
brain searchlight results training on data collected
during violin and clarinet clips, testing on voice clips.
Red-yellow colors represent classification accuracy.
Significant clusters were determined by permutation
testing. All images are thresholded to show clusters
that reached a FDR-corrected significance level at
alpha¼ 0.05.
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was 39% (SD¼ 9%), which were both statistically significant according
to a one-way t-test against theoretical chance (within: t(37)¼ 9.12,
p¼ 5.33� 10�11; across: t(37)¼ 4.22, p¼ 0.0002). No significant dif-
ferences were found between the classification accuracies when duration
was added as a regressor (within: t(37)¼ 0.61, p¼ 0.55, across:
t(37)¼ 0.53, p¼ 0.60, paired t-test). Because of these, we did not re-
compute the searchlight analysis using the results from the GLM anal-
ysis with duration modelled.

We also conducted a classification analysis using the acoustic features
of the sound clips only. These included 12 features related to timbre,
rhythm, and tonality as described in (Alluri et al., 2012) as well as
fundamental frequency and duration (Paquette et al., 2013). The linear
SVM classifier could successfully classify the emotion label of the sound
clip 82% of the time using all data and 60% on average when training and
testing on data from separate instruments (cross classification). The
duration of the sound clips was determined to be the most important
feature used by the SVM. When duration was removed, classification
accuracy was 72% when using data from all instruments and 57% on
average when training and testing across all three instruments (see
Table 2). After removing duration, the most important features for clas-
sification were fluctuation centroid and spectral flux. Fluctuation
centroid is a measure of rhythmic changes in sounds and is calculated by
taking the mean (center of gravity) of the fluctuation spectrum, which
conveys the periodicities contained in a sound wave's envelope (Alluri
et al., 2012). A one-way ANOVA revealed a significant main effect of
emotion F(2,87)¼ 29.93, p< 0.0001) on fluctuation centroid. Fear clips
(M¼ 2977; SD¼ 1220) were significantly higher than both sad
(M¼ 1325; SD¼ 554; t(58)¼ 6.76, padjust< 0.0001) and happy clips
(M¼ 2432; SD¼ 632.21; t(58)¼ , padjust< 0.0001). Spectral flux is a
Table 2
Classification of emotion of stimuli using acoustic features (duration and
fundamental frequency).

Happy Sad Fear Total

Within classification w/duration 0.73 0.83 0.90 0.82
w/out duration 0.53 0.87 0.77 0.72

Cross-classification:
Test on voice

w/duration 0.50 0.20 0.90 0.57
w/out duration 0.50 0.40 0.70 0.53

Cross-classification:
Test on violin

w/duration 0.50 0.70 0.30 0.50
w/out duration 0.50 0.30 0.30 0.37

Cross-classification:
Test on clarinet

w/duration 0.60 1.00 0.60 0.73
w/out duration 0.80 1.00 0.60 0.80
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measure of how the variance in the audio spectrum changes over time
and therefore conveys both spatial and temporal components of sound
(Alluri et al., 2012). It is highly correlated with fluctuation centroid with
our sound clips. A one-way ANOVA revealed that fearful clips
(M¼ 175.03, SD¼ 86.05) had a significantly higher spectral flux than
both sad (M¼ 59.70, SD¼ 33.32; t(58)¼ 6.85, p< 0.001) and happy
clips (M¼ 93.20, SD¼ 28.25; t(58)¼ 4.95, p< 0.001).

The results from the acoustic classification provide information
regarding how the fMRI-based classifier is able to decode the auditory
emotions and suggests that differences in neural responses to changes in
rhythm and timbre between the emotions might contribute to the clas-
sifier's performance.

Discussion

By using multivariate cross-classification and searchlight analyses
with different types of auditory stimuli that convey the same three
emotions, we identified higher-level neural regions that process the af-
fective information of sounds produced from various sources. Using fMRI
data collected from the entire brain, above-chance classification of
emotions expressed through auditory stimuli was found both within and
across instruments. Searchlight analyses revealed that the primary and
secondary auditory cortices, including the superior temporal gyrus (STG)
and sulcus (STS), extending into the parietal operculum and posterior
insula, exhibit emotion-specific and modality-general patterns of neural
activity. This is supported by the fact that BOLD signal in these regions
could differentiate the affective content when the classifier was trained
on data from one instrument and tested on data from another instrument.
Furthermore, within and cross-modal classification performance within a
region spatially confined to the dorsal anterior portion of the insula was
positively correlated with a behavior measure of empathy. To our
knowledge, this is the first study to report the emotion-related spatial
patterns that are shared across both musical instruments and vocal
sounds as well as to link the degree of predictive informationwithin these
spatial patterns with individual differences.

The findings confirm the role of the cortices in the STG and the STS
regions in perceiving emotions conveyed by auditory stimuli. Significant
classification of vocal expressions of emotions was previously reported in
the STG (Kotz et al., 2013) and the region is active when processing
acoustical (Salimpoor et al., 2015) and affective components of music
(Koelsch, 2014). The left STG was also found to code for both lower-level
acoustic aspects as well as higher-level evaluative judgments of
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nonlinguistic vocalizations of emotions (Bestelmeyer et al., 2014). It has
been suggested that the STG and STS bilaterally may be involved in
tracking the changing acoustic features of sounds as they evolve over
time (Schonwiesner et al., 2005). The STS in particular appears to inte-
grate audio and visual information during the processing of non-verbal
affective stimuli (Kreifelts et al., 2009). Both facial and vocal expres-
sions of emotions activate the STS (Escoffier et al., 2013; Wegrzyn et al.,
2015). Multivariate neuroimaging studies have proposed that supra-
modal mental representations of emotions lie in the STS (Peelen et al.,
2010). Furthermore, aberrations in both white-matter volume (von dem
Hagen et al., 2011) and task-based functional activity (Alaerts et al.,
2014) in these regions were associated with emotion recognition deficits
in individuals with autism spectrum disorder (ASD). Our findings suggest
that discrete emotions expressed through music are represented by
similar patterns of activity in the auditory cortex as when expressed
through the human voice. This confirms the role of the STG and STS in
processing the perceived affective content of a range of sounds, both
musical and non-musical, that is not purely dependent on lower-level
acoustic features.

While the peak of the searchlight accuracy maps was located in the
auditory cortex, the significant results extend into the parietal opercu-
lum. Because these two regions are adjacent and because the neuro-
imaging data are spatially smoothed both in the preprocessing steps and
in the searchlight analysis, we cannot be certain that the significant
classification accuracy found in the parietal operculum indicates that this
region is additionally involved in representing emotions from sounds.
Nonetheless, the idea that cross-modal representation of emotions could
be located in this region is consistent with previous research. The inferior
portion of the somatosensory cortex, which is located in the parietal
operculum (Eickhoff et al., 2006), has been shown to be engaged during
vicarious experiences of perceived emotions (Straube andMiltner, 2011).
Furthermore, patients with lesions in the right primary and secondary
somatosensory cortices performed poorly in emotion recognition tasks
(Adolphs et al., 2000) and reported reduced intensity of subjective
feelings in response to music (Johnsen et al., 2009). Transcranial mag-
netic stimulation applied over the right parietal operculum region was
also shown to impede the ability to detect the emotions of spoken lan-
guage (Rijn et al., 2005). Using multivariate methods, Man et al. (2015)
found activity in the parietal operculum could be used to reliably classify
objects when presented aurally, visually, and tactilely, suggesting that
this region contains modality invariant representations of objects and
may therefore serve as a convergence zone for information coming from
multiple senses. Taken together, the fact that we find significant pre-
dictive affective information in the parietal operculum may suggest that
the ability to recognize the emotional content of sounds relies on an in-
ternal simulation of the actions and sensations that go into producing
such sounds.

The searchlight accuracy maps additionally extended into the poste-
rior portion of the insula. The insula is believed to be involved in map-
ping bodily state changes associated with particular feeling states
(Damasio et al., 2013; Immordino-Yang et al., 2014). A range of
subjectively-labeled feeling states could be decoded from brain activity in
the insula, suggesting that the physiological experience that distinguishes
one emotion from another is linked to distinct spatial patterns of activity
in the insula (Saarimaki et al., 2015). Studies have shown that the region
is largely modality invariant, activated in response to facial expressions
of emotions (Wegrzyn et al., 2015), perceptual differences between
emotions conveyed through non-speech vocalizations (Bestelmeyer et al.,
2014), multimodal presentations of emotions (Schirmer and Adolphs,
2017) and by a wide range of emotions conveyed through music
(Baumgartner et al., 2006; Park et al., 2013). The insula's role in auditory
processing may be to allocate attentional resources to salient sounds
(Bamiou et al., 2003) as evidenced by cases in which patients with lesions
that include the insula but not Heschl's gyrus develop auditory agnosia
(Fifer et al., 1993). The function of the insula in processing emotions
expressed across the senses is further substantiated by the observation
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that a patient with a lesion in the insula showed an impaired ability to
recognize the emotion disgust when expressed in multiple modalities
(Calder et al., 2000). Developmental disorders characterized by deficits
in emotional awareness and experience may be linked to aberrant func-
tioning of the insula, as decrease insular activity was observed in ASD
children observing emotional faces (Dapretto et al., 2006) and altered
resting-state functional connectivity between the posterior insula and
somatosensory cortices was observed in adults with ASD (Ebisch et al.,
2011). The fact that emotions conveyed through auditory stimuli could
be classified based on activity in the posterior insula in our study pro-
vides further evidence for the hypothesis that perceiving and recognizing
an emotion entails recruiting the neural mechanisms that represent the
subjective experience of that same emotion.

Despite this finding, classification accuracy within a region of in-
terest in the dorsal anterior portion of the insula was significantly
positively correlated with empathy. The anterior insula was not one of
the significant regions found in the searchlight analysis. These two
results might be explained in the context of previous functional and
structural imaging studies that suggest that subdivisions of the insular
cortex are associated with specific functions (Deen et al., 2011). Ac-
cording to such accounts, the posterior insula, which is structurally
connected to the somatosensory cortices, is more directly involved in
affective processing of visceral sensations (Kurth et al., 2010) and
interoceptive awareness (Craig, 2009), whereas the dorsal anterior
insula, which is connected to the cognitive control network and the
ACC, is more directly involved in socio-emotional abilities such as
empathy and subjective awareness (Craig, 2009). This is evidenced by
the fact that the anterior insula is activated when both observing and
imitating the emotions of others (Carr et al., 2003). Measures of
empathic concern, a subtype of affective empathy referring to the
tendency to feel sympathy or concern for others, have been shown to
be positively correlated with anterior insula activity when viewing
emotional pictures (Silani et al., 2008) as well as when observing
loved-ones in pain (Singer et al., 2004). Given that classification ac-
curacy obtained from data within the dorsal anterior insula specif-
ically, was correlated with empathic concern, our results provide
further evidence for the unique role of this subdivision in enabling the
emotional resonance that is essential to understanding the feelings of
others. We speculate that individuals who readily behave empathically
might have more finely tuned representations of emotions in the
dorsal anterior insula when processing affective information.

While we were mainly interested in identifying brain regions that
conserve affect-related information across sounds with differing
acoustical properties, we recognize that certain acoustic properties are
also integral to specific emotional categories regardless of the source
of the sound. Previous results have shown that happiness, for example,
is characterized by higher fundamental frequencies and faster tempos
when conveyed through both vocal expressions and musical pieces
(Juslin and Laukka, 2003). An earlier attempt to disentangle the
neural processing of acoustic changes from the neural processing of
perceptual changes associated with two different emotions conveyed
through auditory stimuli acknowledged that the two are interrelated
and that a complete and straightforward separation of the two would
be overly simplistic; indeed, the researchers found evidence for both
distinct and overlapping neural networks associated with these two
processes (Bestelmeyer et al., 2014). Because of this, we did not intend
to control for all potential acoustic differences between our stimuli,
believing that these features may be essential to that emotional cate-
gory. Because the duration of the clips varied significantly by emotion
and is a feature not directly tied to affective expression, we did regress
out the variance explained by duration from our GLM model and
showed that cross-instrument classification performance did not
change. Besides for duration, no other acoustic properties of the
sounds were regressed out of the signal. We therefore might expect
that our classifier may be sensitive to signal that is responsive to
certain acoustic variations.
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To make predictions about the types of acoustic variation that the
classifier may be sensitive to, we conducted classification using several
audio features extracted for each clip. We found that the acoustic-based
classifier performance was also largely dependent on differences in
duration between the emotions, as evidenced by the attenuating in per-
formance when durational information was removed. While it is difficult
to know what types of information the fMRI-based classifier is using to
make distinctions between the emotional states, the classifier trained on
acoustic features alone without duration can provide some hypotheses.
Once duration was removed, the most informative features for classifi-
cation of emotions include a rhythmic feature called fluctuation centroid.
These results suggest that the fMRI-based classifier is not only sensitive to
BOLD signal corresponding to the duration and frequency of the sounds,
and may be capturing finely-tuned responses in the auditory cortex and
insula that are sensitive to changes in rhythm and timbre that are integral
to conveying emotions through sound.

Using BOLD data from a mask of the entire brain, classification ac-
curacies were between 38 and 43% for the whole-brain within instru-
ment classification and 36–40% for the whole-brain cross-instrument
classification. Theoretically, if the classifier was guessing the emotional
category at random, just by chance, it would correctly identify the
emotion 33% of the time. While we recognize that the accuracies ob-
tained here are not impressively high compared to theoretical chance,
they are statistically significant according to a one-way t-test corrected
for multiple comparisons and comparable to those reported in other
multivariate cross-classification fMRI studies (Skerry and Saxe, 2014;
Kim et al., 2017). Furthermore, the cross instrument classification ac-
curacies should be interpreted in relation to the within instrument clas-
sification accuracies, which may set the upper bound of possible
performance of a cross-modal classifier (Kaplan et al., 2015). We there-
fore would not expect cross instrument classification to perform better
than within instrument classification and the fact that the cross instru-
ment accuracies are still significantly above chance provides us with
compelling evidence that unique spatial patterns of BOLD signal
throughout does contain some predictive information regarding the
emotional category.

Of additional note, upon inspection of the confusion matrices, the
within-instrument classification performance correctly identified fearful
clips to a greater degree than the other two emotions, despite the fact
positive predictive value across all three was not drastically different.
This contrasts with the behavioral findings, in which fear was the
emotion most difficult to identify and label. This could indicate that
while the fearful clips were easily distinguishable from the other two
emotions, these perceived differences may not necessarily adhere to the
concepts and features humans have learned to associate with the cate-
gorical label of fear. Further exploration into the acoustic components
and behavioral responses to fearful musical and vocal clips will help to
interpret these opposing findings.

In sum, our study reveals the emotion-specific neural information that
is shared across sounds from musical instruments and the human voice.
The results support the idea that the emotional meaning of sounds can be
represented by unique spatial patterns of neural activity in sensory and
affect processing areas of the brain, representations that do not depend
solely on the specific acoustic properties associated with the source in-
strument. These findings therefore have implications for scientific in-
vestigations of neurodevelopmental disorders characterized by an
impaired ability to recognize vocal expressions of emotions (Allen et al.,
2013) and provide a clearer picture of the remarkable ability of the
human brain to instantaneously and reliably infer emotions when
conveyed nonverbally.

Funding

Funding for this work was provided by the Brain and Creativity
Institute.
9

Acknowledgements

The authors would like to thank Hanna Damasio for her assistance
and input regarding neuroanatomical distinctions and all private donors
to the Brain and Creativity Institute.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.
org/10.1016/j.neuroimage.2018.02.058.

References

Adolphs, R., Damasio, H., Tranel, D., Cooper, G., Damasio, A.R., 2000. A role for
somatosensory cortices in the visual recognition of emotion as revealed by three-
dimensional lesion mapping. J. Neurosci. 20, 2683–2690.

Alaerts, K., Woolley, D.G., Steyaert, J., Martino, A. Di, Swinnen, S.P., Wenderoth, N.,
2014. Underconnectivity of the superior temporal sulcus predicts emotion
recognition deficits in autism. Soc. Cog. Affect. Neurosci. 9, 1589–1600.

Allen, R., Davis, R., Hill, E., 2013. The effects of autism and alexithymia on physiological
and verbal responsiveness to music. J. Autism Dev. Disord. 43, 432–444.

Alluri, V., Toiviainen, P., J€a€askel€ainen, I.P., Glerean, E., Sams, M., Brattico, E., 2012.
Large-scale brain networks emerge from dynamic processing of musical timbre, key
and rhythm. Neuroimage 59, 3677–3689.

Aub�e, W., Angulo-Perkins, A., Peretz, I., Concha, L., Armony, J.L., 2013. Fear across the
senses: brain responses to music, vocalizations and facial expressions. Soc. Cognit.
Affect Neurosci. 10, 399–407.

Bamiou, D., Musiek, F.E., Luxon, L.M., 2003. The insula (Island of Reil) and its role in
auditory processing: literature review. Brain Res. Rev. 42, 143–154.

Baumgartner, T., Lutz, K., Schmidt, C.F., J€ancke, L., 2006. The emotional power of music:
how music enhances the feeling of affective pictures. Brain Res. 1075, 151–164.

Belin, P., Fillion-Bilodeau, S., Gosselin, F., 2008. The Montreal Affective Voices: a
validated set of nonverbal affect bursts for research on auditory affective processing.
Behav. Res. Meth. 40, 531–539.

Bestelmeyer, P.E.G., Maurage, P., Rouger, J., Latinus, M., Belin, P., 2014. Adaptation to
vocal expressions reveals multistep perception of auditory emotion. J. Neurosci. 34,
8098–8105.

Calder, A.J., Keane, J., Manes, F., Antoun, N., Young, A.W., 2000. Impaired recognition
and experience of disgust following brain injury. Nat. Neurosci. 3, 1077–1078.

Carr, L., Iacoboni, M., Dubeau, M., Mazziotta, J.C., Lenzi, G.L., 2003. Neural mechanisms
of empathy in humans : a relay from neural systems for imitation to limbic areas.
Proc. Natl. Acad. Sci. 100, 5497–5502.

Craig, A.D., 2009. How do you feel–now? The anterior insula and human awareness. Nat.
Rev. Neurosci. 10, 59–70.

Damasio, A., Damasio, H., Tranel, D., 2013. Persistence of feelings and sentience after
bilateral damage of the insula. Cerebr. Cortex 23, 833–846.

Dapretto, M., Davies, M.S., Pfeifer, J.H., Scott, A.A., Sigman, M., Bookheimer, S.Y.,
Iacoboni, M., 2006. Understanding emotions in others: mirror neuron dysfunction in
children with autism spectrum disorders. Nat. Neurosci. 9, 28–30.

Davis, M.H., 1983. Measuring individual differences in empathy: evidence for a
multidimensional approach. J. Pers. Soc. Psychol. 44, 113–126.

Deen, B., Pitskel, N.B., Pelphrey, K.A., 2011. Three systems of insular functional
connectivity identified with cluster analysis. Cerebr. Cortex 21, 1498–1506.

Ebisch, S.J.H., Gallese, V., Willems, R.M., Mantini, D., Groen, W.B., Romani, G.L.,
Buitelaar, J.K., Bekkering, H., 2011. Altered intrinsic functional connectivity of
anterior and posterior insula regions in high-functioning participants with autism
spectrum disorder. Hum. Brain Mapp. 32, 1013–1028.

Eickhoff, S.B., Schleicher, A., Zilles, K., 2006. The human parietal operculum. I.
Cytoarchitectonic mapping of subdivisions. Cerebr. Cortex 15, 254–267.

Ekman, P., 1992. An argument for basic emotions. Cognit. Emot. 6, 169–200.
Escoffier, N., Zhong, J., Schirmer, A., Qiu, A., 2013. Emotional expressions in voice and

music: same code, same effect? Hum. Brain Mapp. 34, 1796–1810.
Ethofer, T., Van De Ville, D., Scherer, K., Vuilleumier, P., 2009. Decoding of emotional

information in voice-sensitive cortices. Curr. Biol. 19, 1028–1033.
Fifer, R.C., 1993. Insular stroke causing unilateral auditory processing disorder: case

report. J. Am. Acad. Audiol. 4, 364–369.
Fritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., Friederici, A.D.,

Koelsch, S., 2009. Universal recognition of three basic emotions in music. Curr. Biol.
19, 573–576.

Frühholz, S., Trost, W., Grandjean, D., 2014. The role of the medial temporal limbic
system in processing emotions in voice and music. Prog. Neurobiol. 123, 1–17.

Hailstone, J.C., Omar, R., Henley, S.M.D., Frost, C., Michael, G., Warren, J.D.,
Hailstone, J.C., Omar, R., Henley, S.M.D., Frost, C., Hailstone, J.C., Omar, R.,
Henley, S.M.D., Frost, C., Warren, J.D., 2009. It's not what you play, it's how you play
it: timbre affects perception of emotion in music. Q. J. Exp. Psychol. 62, 2141–2155.

Heller, R., Stanley, D., Yekutieli, D., Nava, R., Benjamini, Y., 2006. Cluster-based analysis
of FMRI data. Neuroimage 33, 599–608.

Immordino-Yang, M.H., Yang, X.-F., Damasio, H., 2014. Correlations between social-
emotional feelings and anterior insula activity are independent from visceral states
but influenced by culture. Front. Hum. Neurosci. 8, 1–15.

Jenkinson, M., Smith, S., 2001. A global optimisation method for robust affine
registration of brain images. Med. Image Anal. 5, 143–156.

https://doi.org/10.1016/j.neuroimage.2018.02.058
https://doi.org/10.1016/j.neuroimage.2018.02.058
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref1
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref1
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref1
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref1
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref66
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref66
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref66
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref66
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref2
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref2
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref2
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref3
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref4
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref4
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref4
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref4
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref4
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref5
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref5
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref5
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref6
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref6
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref6
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref6
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref7
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref7
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref7
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref7
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref8
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref8
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref8
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref8
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref9
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref9
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref9
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref10
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref10
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref10
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref10
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref11
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref11
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref11
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref11
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref12
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref12
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref12
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref13
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref13
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref13
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref13
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref14
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref14
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref14
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref15
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref15
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref15
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref16
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref16
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref16
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref16
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref16
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref17
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref17
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref17
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref18
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref18
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref19
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref19
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref19
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref20
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref20
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref20
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref67
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref67
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref67
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref21
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref21
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref21
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref21
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref22
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref22
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref22
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref23
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref23
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref23
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref23
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref23
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref24
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref24
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref24
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref25
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref25
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref25
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref25
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref64
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref64
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref64


M.E. Sachs et al. NeuroImage 174 (2018) 1–10
Johnsen, E.L., Tranel, D., Lutgendorf, S., Adolphs, R., 2009. A neuroanatomical
dissociation for emotion induced by music. Int. J. Psychophysiol. 72, 24–33.

Juslin, P.N., Laukka, P., 2003. Communication of emotions in vocal expression and music
performance: different channels, same code? Psychol. Bull. 129, 770–814.

Kao, M., Mandal, A., Lazar, N., Stufken, J., 2009. NeuroImage Multi-objective optimal
experimental designs for event-related fMRI studies. Neuroimage 44, 849–856.

Kaplan, J.T., Man, K., Greening, S.G., 2015. Multivariate cross-classification : applying
machine learning techniques to characterize abstraction in neural representations.
Front. Hum. Neurosci. 9, 1–12.

Kim, J., Shinkareva, S.V., Wedell, D.H., 2017. Representations of modality-general
valence for videos and music derived from fMRI data. Neuroimage 148, 42–54.

Kim, Y.E., Schmidt, E.M., Migneco, R., Morton, B.G., Richardson, P., Scott, J., Speck, J a,
Turnbull, D., 2010. Music Emotion Recognition : a State of the Art Review,
pp. 255–266. Inf Retr Boston.

Kleiner, M., Brainard, D.H., Pelli, D., 2007. What's New in Psychtoolbox-3? Percept 36
ECVP Abstr Suppl.

Koelsch, S., 2014. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15,
170–180.

Kotz, S.A., Kalberlah, C., Bahlmann, J., Friederici, A.D., Haynes, J.D., 2013. Predicting
vocal emotion expressions from the human brain. Hum. Brain Mapp. 34, 1971–1981.

Kragel, P.A., LaBar, K.S., 2015. Multivariate neural biomarkers of emotional states are
categorically distinct. Soc. Cognit. Affect Neurosci. 10, 1437–1448.

Kreifelts, B., Ethofer, T., Grodd, W., 2009. Cerebral representation of non-verbal
emotional perception : fMRI reveals audiovisual integration area between voice- and
face-sensitive regions in the superior temporal sulcus. Neuropsychologia 47,
3059–3066.

Kriegeskorte, N., Goebel, R., Bandettini, P., 2006. Information-based Functional Brain
Mapping.

Kurth, F., Zilles, K., Fox, P.T., Laird, A.R., Eickhoff, S.B., 2010. A link between the
systems: functional differentiation and integration within the human insula revealed
by meta-analysis. Brain Struct. Funct. 214, 519–534.

Lamm, C., Batson, C.D., Decety, J., 2007. The neural substrate of human empathy: effects
of perspective-taking and cognitive appraisal. J. Cognit. Neurosci. 19, 42–58.

Lartillot, O., Toiviainen, P., 2007. A Matlab toolbox for musical feature extraction from
audio. In: International Conference on Digital Audio Effects, pp. 237–244.

Linke, A.C., Cusack, R., 2015. Flexible information coding in human auditory cortex
during perception, imagery, and STM of complex sounds. J. Cognit. Neurosci. 27.

Man, K., Damasio, A., Meyer, K., Kaplan, J.T., 2015. Convergent and invariant object
representations for Sight,Sound, and touch. Hum. Brain Mapp. 36, 3629–3640.

Mullensiefen, D., Gingas, B., Musil, J., Steward, L., 2014. The musicality of non-
musicians: an Index for assessing musical sophistication in the general population.
PLoS One 9.

Norman, K a, Polyn, S.M., Detre, G.J., Haxby, J.V., 2006. Beyond mind-reading: multi-
voxel pattern analysis of fMRI data. Trends Cognit. Sci. 10, 424–430.

Paquette, S., Peretz, I., Belin, P., 2013. The “Musical Emotional Bursts ”: a validated set of
musical affect bursts to investigate auditory affective processing. Front. Psychol. 4,
1–7.

Park, M., Hennig-Fast, K., Bao, Y., Carl, P., P€oppel, E., Welker, L., Reiser, M., Meindl, T.,
Gutyrchik, E., 2013. Personality traits modulate neural responses to emotions
expressed in music. Brain Res. 1523, 68–76.
10
Peelen, M.V., Atkinson, A.P., Vuilleumier, P., 2010. Supramodal representations of
perceived emotions in the human brain. J. Neurosci. 30, 10127–10134.

Rigoulot, S., Pell, M.D., Armony, J.L., 2015. Time course of the influence of musical
expertise on the processing of vocal and musical sounds. Neuroscience 290, 175–184.

Rijn, S Van, Aleman, A., Diessen, E Van, Berckmoes, C., Vingerhoets, G., Kahn, R.S., 2005.
What is said or how it is said makes a difference : role of the right fronto-parietal
operculum in emotional prosody as revealed by repetitive TMS. Eur. J. Neurosci. 21,
3195–3200.

Saarimaki, H., Gotsopoulos, A., Jaaskelainen, I.P., Lampinen, J., Vuilleumier, P., Hari, R.,
Sams, M., Nummenmaa, L., 2015. Discrete neural signatures of basic emotions.
Cerebr. Cortex 1–11.

Salimpoor, V.N., Zald, D.H., Zatorre, R.J., Dagher, A., Mcintosh, A.R., 2015. Predictions
and the brain : how musical sounds become rewarding. Trends Cognit. Sci. 19, 86–91.

Sander, K., Scheich, H., 2005. Left auditory cortex and amygdala, but right insula
dominance for human laughing and crying. J. Cognit. Neurosci. 17, 1519–1531.

Schirmer, A., Adolphs, R., 2017. Emotion perception from Face,Voice, and touch:
comparisons and convergence. Trends Cognit. Sci. 21, 216–228.

Schonwiesner, M., Rübsamen, R., von Cramon, D.Y., 2005. Hemispheric asymmetry for
spectral and temporal processing in the human antero-lateral auditory belt cortex.
Eur. J. Neurosci. 22, 1521–1528.

Silani, G., Bird, G., Brindley, R., Singer, T., Frith, C., Frith, U., 2008. Levels of emotional
awareness and autism : an fMRI study. Soc. Neurosci. 3, 97–112.

Singer, T., Seymour, B., Doherty, J.O., Kaube, H., Dolan, R.J., Frith, C.D., 2004. Empathy
for pain involves the affective but not sensory components of pain. Science (80- ) 303,
1157–1162.

Skerry, A.E., Saxe, R., 2014. A common neural code for perceived and inferred emotion.
J. Neurosci. 34, 15997–16008.

Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-
Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K.,
Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.,
2004. Advances in functional and structural MR image analysis and implementation
as FSL. Neuroimage 23, S208–S219.

Smith, S.M., Nichols, T.E., 2009. Threshold-free cluster enhancement: addressing
problems of smoothing, threshold dependence and localisation in cluster inference.
Neuroimage 44, 83–98.

Stelzer, J., Chen, Y., Turner, R., 2013. Statistical inference and multiple testing correction
in classification-based multi-voxel pattern analysis (MVPA): random permutations
and cluster size control. Neuroimage 65, 69–82.

Straube, T., Miltner, W.H.R., 2011. Attention to aversive emotion and specific activation
of the right insula and right somatosensory cortex. Neuroimage 54, 2534–2538.

von dem Hagen, E.A.H., Nummenmaa, L., Yu, R., Engell, A.D., Ewbank, M.P., Calder, A.J.,
2011. Autism spectrum traits in the typical population predict structure and function
in the posterior superior temporal sulcus. Cerebr. Cortex 21, 492–500.

Wegrzyn, M., Riehle, M., Labudda, K., Woermann, F., Baumgartner, F., Pollmann, S.,
Bien, C.G., Kissler, J., 2015. Investigating the brain basis of facial expression
perception using multi-voxel pattern analysis. Cortex 69, 131–140.

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.M., Nichols, T.E., 2014.
Permutation inference for the general linear model. Neuroimage 92, 381–397.

http://refhub.elsevier.com/S1053-8119(18)30165-4/sref26
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref26
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref26
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref27
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref27
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref27
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref28
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref28
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref28
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref29
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref29
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref29
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref29
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref30
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref30
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref30
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref31
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref31
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref31
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref31
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref32
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref32
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref33
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref33
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref33
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref34
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref34
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref34
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref35
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref35
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref35
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref65
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref65
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref65
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref65
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref65
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref36
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref36
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref37
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref37
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref37
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref37
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref38
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref38
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref38
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref39
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref39
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref39
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref40
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref40
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref41
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref41
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref41
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref42
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref42
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref42
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref43
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref43
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref43
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref44
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref44
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref44
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref44
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref45
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref45
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref45
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref45
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref45
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref46
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref46
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref46
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref47
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref47
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref47
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref48
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref48
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref48
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref48
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref48
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref49
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref49
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref49
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref49
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref50
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref50
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref50
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref51
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref51
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref51
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref52
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref52
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref52
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref53
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref53
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref53
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref53
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref54
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref54
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref54
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref55
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref55
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref55
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref55
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref56
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref56
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref56
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref57
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref58
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref58
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref58
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref58
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref59
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref59
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref59
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref59
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref60
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref60
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref60
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref61
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref61
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref61
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref61
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref62
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref62
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref62
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref62
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref63
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref63
http://refhub.elsevier.com/S1053-8119(18)30165-4/sref63

	Decoding the neural signatures of emotions expressed through sound
	Introduction
	Materials and methods
	Participants
	Survey
	Stimuli
	Design and procedure
	Data acquisition
	Data processing
	Multivoxel pattern analysis
	Region of interest classification
	Whole-brain searchlight analysis
	Multiple regression with personality measures
	Acoustic features of sound clips

	Results
	Behavioral results
	Multivariate results
	Searchlight results
	Multiple regression results
	Acoustic features classification and duration

	Discussion
	Funding
	Acknowledgements
	Appendix A. Supplementary data
	References


